Highlights of Potential Case Studies from CAMEX-4

March 14, 2002

Edward J. Zipser University of Utah

University of Utah

Short List: Case Study Opportunities

- Chantal: Intense convection, asymmetric
- Erin: Outstanding snapshot of mature storm
- Gabrielle: Landfall, rain, slow to reintensify
- Humberto: 3 consecutive days excellent coverage; persistent asymmetry with strong convection on north side; intensity change
- KAMP: 19 Sept for combined surface-based radars plus aircraft; 7, 9 Sept for a/c data

Why Didn't Chantal Intensify? Larger Context: What are some of the unanswered questions about intensification?

- What is the relative importance of external influences vs. internal processes?
- Are strong convective rainbands good or bad?
- Is intense convection near the developing eyewall a necessity or just a side effect?
- Is asymmetry a hindrance to intensification? Why or why not? Always or just with certain storms?
- Boundary layer processes; role of downdrafts, evaporation of spray in preventing high theta-e core

External Influences on Intensification Getting beyond 'good' trough vs. 'bad' trough and 'high SST good, high shear bad'

- Gabrielle failed to intensify over the Gulf Stream on 15 Sept. Why?
- Humberto intensified smartly between 22-23 September over not-so-warm water and in spite of shear and asymmetrical convection. (concentrated on north side). Why?

Humberto - COVES Mission

- If we can't sort out external influences vs. internal processes in Humberto's case, it won't be for lack of data.
- 22 Sep. data is during rapid deepening with no little precip on south side.
- Distribution of convection is not unlike that of Bonnie on 23 Aug 98 but storm history is very different.

Short List: Case Study Opportunities

- Chantal: Intense convection, asymmetric
- Erin: Outstanding snapshot of mature storm
- Gabrielle: Landfall, rain, slow to reintensify
- Humberto: 3 consecutive days excellent coverage; persistent asymmetry with strong convection on north side; intensity change
- KAMP: 19 Sept for combined surface-based radars plus aircraft; 7, 9 Sept for a/c data

OMISSIONS!!!

- Microphysics!
- PR-2, rain estimation, KAMP radar suite, polarimetry, TRMM algorithms....
- Strat-trop exchange, dehydration....
- JPL Hygrometer data; LASE data; using the full database to describe moisture changes...
- Feedback between observational folks and modelers as integral part of case studies

Case Study Opportunities: Working Together as a Team

- We have much to learn from each other
- Meteorology of storms provides context for contributions using data from all instruments
- 'First round' papers can't be comprehensive
- "Second round" papers should build on first round results, CAMEX-3 results, and more...
- Value of our research in solving long-standing problems depends on continued partnerships

D20010923_234015.4 012625060 drop21 CAMEX 4, 010417 NASA DC-8,

JPL Laser Hygrometer/CAMEX-4 preliminary DC-8 Flt 010417 Flight Date 20010923 10 H₂O (g / kg) Markey Market 0.1 0.01 Relative Humidity (%) Ice 150 Liquid 100 50 0 20 Frost Point (C) -20 -40 -60 -80 H₂O vapor (ppmv) 10000 1000 100 -10 18 19 20 21 22 24 25 26 23

Time (hours Z)